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The hypothesis of the small scales being passively swept along by the large-scale mo-
tions in turbulent flow is extended to passive scalars in isotropic turbulence. A theory
based on strong mutual cancellation between local and advective derivatives and other
assumptions is shown to capture the Reynolds and Schmidt number dependence of
time scales characterizing Eulerian and Lagrangian rates of change. Agreement with
direct numerical simulation data improves systematically with increasing Reynolds
number. In accordance with the physics of random sweeping, the Eulerian frequency
spectrum is very similar in shape to the wavenumber spectrum, but is broadened at
higher frequencies compared to its Lagrangian counterpart. Overall the hypothesis
appears to be even more valid for transported scalars than for the velocity field, which
gives support to the use of Lagrangian approaches in the study of turbulent mixing.

1. Introduction
An important concept in the study of turbulent transport at high Reynolds number

is the assumption that the small scales are passively swept past a fixed observer by the
large eddies in the flow. The physics of this ‘random sweeping’ implies that changes
in the Lagrangian frame following the path of fluid particle motion dominated by
the large scales are small. The dominance of advective transport by the velocity
fluctuations is a primary reason behind the common use and success of Lagrangian
approaches in the study of turbulent transport processes, including the modelling of
contaminant dispersion in the environment (see e.g. a recent review by Sawford 2001).
In addition, in analytical theories of turbulence a proper treatment of the effects of
random sweeping is critical in the use of Lagrangian methods to derive two-point
models of Eulerian inertial-range scaling behaviour in turbulence and passive scalar
fields. This particular aspect has been demonstrated in classical work by Kraichnan
(1966), as well as more recent use of Lagrangian or quasi-Lagrangian variables
(Belinicher & L’vov 1987) to investigate scaling exponents in the structure functions
of passive scalars (Fairhall et al. 1996). Similar arguments based on sweeping by
the mean velocity are also central to the Taylor frozen-turbulence hypothesis, which
is often invoked in experiments to infer space derivatives from temporal surrogates
recorded by a fixed sensor in space.

Our primary motivation in this work is to use random sweeping concepts to provide
further information on Lagrangian quantities important in the modelling of mixing
and dispersion. Of particular interest in this context is the work of Tennekes (1975),
who used these ideas to develop theoretical estimates of Eulerian and Lagrangian
time microscales representing time derivatives in the corresponding reference frames,
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and to compare the shapes of Eulerian and Lagrangian spectra in the frequency
domain. Although Tennekes’ results were, on a quantitative level, affected by the use
of data at low Reynolds number, qualitatively his hypothesis appears to be supported
well by many later investigations (e.g. direct numerical simulations (DNS) in Yeung
& Pope 1989 and Tsinober, Vedula & Yeung 2001).

We consider here, in a framework somewhat similar to Tennekes (1975), the
extension of random-sweeping concepts to passive scalar quantities transported in
turbulent flow. Recent results from DNS (Yeung 2001) for passive scalar fluctuations
maintained by a uniform mean gradient in forced stationary isotropic turbulence
have shown that a marked contrast exists between the evolution of scalar fluctuations
in Eulerian versus Lagrangian frames. In particular, especially at higher Reynolds
number and/or Schmidt number, scalar fluctuations were found to evolve more
quickly than the velocity in the Eulerian frame, but less so in the Lagrangian frame.
One of our objectives below is to perform an analysis of the Eulerian and Lagrangian
rates of change, in a way that gives direct information on how these quantities depend
on Reynolds number and Schmidt number. We obtain several theoretical estimates
and compare them with results from the analysis of DNS databases presented in
Yeung (2001), and from a new series of simulations at low Reynolds number but
with a fairly wide range of Schmidt numbers from 1/4 to 64. A second objective is
to explore the functional forms of Eulerian and Lagrangian spectra of the scalars in
relation to each other. These two objectives are addressed respectively in §§ 2 and 3.
Conclusions are summarized in § 4.

2. Time scale estimates
2.1. Eulerian time scale

We consider the fluctuations of a scalar of molecular diffusivity D governed by the
transport equation in tensor form

Dφ

Dt
=
∂φ

∂t
+ ui

∂φ

∂xi
= −ui ∂Φ

∂xi
+ D

∂2φ

∂xi∂xi
, (2.1)

where D/Dt is the material derivative operator, and Φ is the mean scalar field with a
uniform gradient. The material derivative Dφ/Dt is equivalent to the Lagrangian rate
of change of φ, which was found in Yeung (2001) to have a much smaller variance
than the Eulerian unsteady time derivative ∂φ/∂t. This suggests that, in a way similar
to the work of Tennekes (1975, equation 1 therein) for the velocity field, we may
assume a strong degree of cancellation between the unsteady (local) and advective
(convective) contributions to the material derivative: that is,

∂φ

∂t
≈ −ui ∂φ

∂xi
. (2.2)

As in the case of the velocity field (Tsinober et al. 2001), the degree of mutual
cancellation can be quantified by a correlation coefficient between the unsteady and
advective terms. The hypothesis above implies that this correlation is close to −1.0:
indeed for Sc = 1.0 we find it to be −0.956 at Taylor-scale Reynolds number (Rλ) 38
and −0.993 at Rλ 240.

Taking the variance of (2.2) gives the estimate〈(
∂φ

∂t

)2
〉

=

〈
uiuj

∂φ

∂xi

∂φ

∂xj

〉
, (2.3)
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where angled brackets denote ensemble averaging. It is documented well elsewhere
(Overholt & Pope 1996; Yeung 2001) that velocity fluctuations acting upon this mean
gradient leads to a stationary state where the resulting production term for scalar
variance is balanced by molecular dissipation. These properties of homogeneity and
stationarity allow averaging to be taken in both space and time.

If we assume that the microstructure of the scalar field is statistically independent
of the large-scale motions in the velocity field, and that perfect local isotropy applies,
then the right-hand side of (2.3) can be rewritten in terms of the turbulence kinetic
energy (K) and mean scalar dissipation rate (〈χ〉 ≡ 2D〈(∂φ/∂xi)2〉). Accordingly, we
obtain 〈(

∂φ

∂t

)2
〉
≈ K〈χ〉

3D
. (2.4)

We define the Eulerian Taylor time scale to be that characterizing the Eulerian
unsteady rate of change, as

τE,φ =

[ 〈φ2〉
〈(∂φ/∂t)2〉

]1/2

. (2.5)

If we normalize this by the Kolmogorov time scale (τη) then use of (2.4) and (2.5)
gives (

τE,φ

τη

)2

=
3

Sc

1

rφ
, (2.6)

where Sc ≡ ν/D is the Schmidt number, and rφ is the mechanical-to-scalar time scale
ratio, defined by

rφ =
K

〈ε〉
/〈φ2〉
〈χ〉 . (2.7)

Figure 1 shows results for rφ and τE,φ/τη obtained from DNS. The parameter
ranges covered are Sc = 1/8 and 1 at Rλ 140 and 240 (Yeung 2001), and Sc = 1/4,
1/2, 1, 4, 8, 16, 32, and 64 at Rλ 38. (High Schmidt numbers are achieved in low
Reynolds number simulations essentially by refined grid resolution, up to 5123.) The
data on rφ show a mild but definite decrease with Sc, and a weaker dependence on
Reynolds number especially at higher Rλ. In accordance with this, and as suggested
by the estimate (2.6) itself, the Eulerian time-scale ratio τE,φ/τη is seen to be mainly
determined by the Schmidt number. The fact that this ratio decreases strongly with Sc
is consistent with observations from Eulerian time series (Yeung 2001) that, especially
at higher Schmidt numbers, Eulerian scalar fluctuations evolve more rapidly than the
velocity fluctuations.

It should be emphasized that high Reynolds number assumptions are used in
the analysis leading to (2.4) above. Consequently, because of the Reynolds number
limitations of DNS, perfect agreement is not to be expected. On the other hand, it is
encouraging to observe that the best agreement between theory and DNS in figure 1
is that for the case of Sc = 1 at Rλ 240 (the highest Rλ in this work). The Schmidt
number trend in DNS is also seen to be predicted well by the theory. In obtaining
(2.4) from (2.3) we have neglected ‘cross’ terms of the type 〈u1u2∂φ/∂x1∂φ/∂x2〉,
which are found to be negative. This causes (2.4) to give an overestimate of the time
derivative compared to DNS, and correspondingly (2.6) to give an underestimate of
the time-scale ratio τE,φ/τη .
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Figure 1. Variation of (a) mechanical-to-scalar time-scale ratio (rφ) and (b) normalized Eulerian
scalar Taylor time scale (τE,φ/τη) as a function of the parameter RλSc. Open symbols are from DNS
data at different Reynolds numbers: e, Rλ 38; 4, Rλ 140; �, Rλ 240. Corresponding closed symbols
in (b) are for estimates of τE,φ/τη according to (2.6).

2.2. Lagrangian time scale

To estimate the Lagrangian rate of change, we begin by noting that, in (2.1), the
mean gradient (−ui∂Φ/∂xi) and the molecular diffusion terms D∇2φ are respectively
dominated by the large scales and the small scales, and hence almost completely
uncorrelated with each other (with the empirically determined correlation coefficient
about 0.01 for Sc = 1 at Rλ 240). To determine the relative importance of these
terms we can analyse their variances as follows. For a mean gradient of magnitude
G aligned in the x1-direction, the variance of −ui∂Φ/∂xi is simply 〈u2

1〉G2. Although
this quantity is independent of the scalar fluctuations, it can be re-expressed in terms
of scalar statistics by noting that the balance between production and dissipation of
the scalar variance in the stationary state implies

−〈u1φ〉G ≈ 〈χ〉 (2.8)

and hence

〈u2
1〉G2 ≈ 〈χ〉2

〈φ2〉(ρuφ)2
(2.9)

where ρuφ is the velocity–scalar cross-correlation coefficient.
For the variance of D∇2φ, Parseval’s theorem in Fourier space implies that〈

(D∇2φ)2
〉

= D2

∫
k4Eφ(k) dk, (2.10)

where Eφ(k) is the scalar spectrum, and the integral is taken over all wavenumbers in
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the simulation. From Kerr’s (1985) definition of the scalar dissipation skewness (Sχ,
his equation 25), the variance of D∇2φ can be written as

〈(D∇2φ)2〉 = Sχ

√
15

12

〈χ〉
τη
. (2.11)

In our DNS data Sχ is nearly universal, at about 0.5. It may be noted that in the
evolution equation for the scalar dissipation rate, stationarity implies the right-hand
side of (2.10) is also proportional (by a factor equal to the molecular diffusivity)
to a production term representing the nonlinear amplification of scalar gradients by
fluctuating strain rates. Approximate universality for Sχ in (2.11) is thus consistent
with the finding (Vedula, Yeung & Fox 2001) that nonlinear amplification in the
budget of scalar dissipation rate scales with the Kolmogorov time scale.

Using the turbulence time-scale ratio (K/〈ε〉)/τη ≈ (3/2
√

15)Rλ = 0.387Rλ together
with (2.9) and (2.11) we can now write the ratio of molecular diffusion to mean
gradient terms as

〈(D∇2φ)2〉
〈u2

1〉G2
≈ Sχ

√
15

12
(ρuφ)2Rλ

rφ
. (2.12)

With Sχ, ρuφ and rφ all depending only weakly on Reynolds number, this estimate
suggests that the molecular diffusion term will become large compared to the mean
gradient term as Rλ is increased. (For Sc = 1, the ratio of variances increases from
3.3 at Rλ 140 to 6.8 at Rλ 240.) In other words, at high Rλ we expect〈

(Dφ/Dt)2
〉 ≈ 〈(D∇2φ)2

〉
. (2.13)

Comparison of (2.11) and (2.13) with (2.4) shows that the ratio of the variance of the
Lagrangian rate of change to that of the Eulerian rate of change scales as (RλSc)

−1,
which allows us to quantify how quickly the terms neglected in (2.2) become weaker
with increasing Reynolds and/or Schmidt numbers.

With the definition of the Lagrangian Taylor time scale as τL,φ = [〈φ2〉/〈(Dφ/
Dt)2〉]1/2, the above analysis leads to(

τL,φ

τη

)2

≈ 12√
15

1

Sχ

〈φ2〉
〈χ〉

1

τη
. (2.14)

Using again the ratio (K/〈ε〉)/τη ≈ (3/2
√

15)Rλ and setting Sχ = 0.5, we finally obtain(
τL,φ

τη

)2

≈ 2.4
Rλ

rφ
. (2.15)

The Lagrangian to Eulerian time-scale ratio from (2.6) and (2.15) is

τL,φ/τE,φ ≈
√

0.8RλSc. (2.16)

Comparisons for the ratios τL,φ/τη and τL,φ/τE,φ are given in figure 2. As for figure 1,
the agreement is best for data at the highest Reynolds number in the simulations,
and the Schmidt number trend (via (2.15) and (2.16)) at a given Rλ is evidently
captured very well. It can also be noted that, because of the neglect of the mean
gradient contribution in (2.13), the variance of Dφ/Dt in the theory is somewhat of
an underestimate, which in turn leads to (2.15) being an underestimate for τL,φ/τη at
low or moderate Reynolds number.

The results presented above indicate that the hypothesis of small scales being
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Figure 2. Same as figure 1, but for (a) normalized Lagrangian scalar Taylor time scale (τL,φ/τη)
and (b) the ratio τL,φ/τE,φ. Theoretical estimates (closed symbols for τL,φ/τE,φ) are based on (2.15)
and (2.16). (The latter is also given by the dashed line in (b).)

advected nearly unchanged by the large scales (Tennekes 1975) can be extended to
passive scalars. Use of Lagrangian methods is supported by both the smaller rate of
change variance and longer time scales in this reference frame. In contrast Eulerian
calculations involve two large terms (including the advective term which requires
additional closure assumptions) which nearly cancel each other. It is interesting to
note that, in the context of (2.2), the correlation coefficient between unsteady and
advective terms for the scalar field is closer to −1.0 than those for the velocity field
(−0.699 and −0.909 at Rλ 38 and 240 respectively, given in Tsinober et al. 2001).
In other words, the hypothesis considered here appears to be more valid for the
scalars than for the velocity. Implications for the functional forms of Eulerian and
Lagrangian spectra are considered in the next section.

3. Eulerian and Lagrangian spectra
If scalar fluctuations are assumed to be transported purely by being passively swept

past a stationary observer at a constant speed, changes in space and time would be
directly related via a simple transformation of independent variables through a typical
advection velocity. In isotropic turbulence we expect this advective speed, say u∗, to
be proportional, but not necessarily equal, to the r.m.s velocity (u′). One may suggest
a simple correspondence between wavenumber (k) and frequency (ω) of the form

k ∼ ω/u∗. (3.1)

This consideration also suggests that the Eulerian wavenumber spectrum (Eφ(k)) and
Eulerian frequency spectrum (EE

φ (ω)) should have the same shape and correspond to
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Figure 3. Normalized Eulerian wavenumber (a) and frequency (b) spectra of passive scalars at

Rλ 140: 4, Sc = 1/8; e, Sc = 1. A dashed line is drawn at 0.67 for reference.

each other as

EE
φ (ω) ∼ Eφ(k)/u∗. (3.2)

For Sc 6 1 and sufficiently high Reynolds number it is well known that an
inertial–convective range of wavenumbers should exist, such that

Eφ(k) = βE〈χ〉〈ε〉−1/3
k−5/3 for 1/L� k � 1/ηOC, (3.3)

where L is an integral length scale of the flow, ηOC ≡ ηSc−3/4 is the Obukhov–
Corrsin scale representing the smallest scale present in the scalar field, and βE is
the Obukhov–Corrsin constant. It follows from the relations above that the Eulerian
frequency spectrum in the corresponding scaling range can be written as

EE
φ (ω) = βE(u∗/u′)2/3〈χ〉〈ε〉−1/3

u′2/3ω−5/3. (3.4)

It should be noted, however, that the presence of u∗ indicates a direct effect of
parameters of the large scales, and implies that EE

φ (ω) does not satisfy inertial scaling,
nor the associated ideas of small-scale universality.

Eulerian frequency spectra can be obtained in DNS by applying standard time-
series analysis to flow variables at a subset of grid points saved over an extended
period of time and at intervals small compared to the Kolmogorov time scale.
Because this type of data was not saved in our 5123 simulations at Rλ 240, we make
our comparisons between Eφ(k) and EE

φ (ω) here at Rλ 140, the highest Reynolds
number for which both types of data have been retained. Compensated spectra for
both Eφ(k) and EE

φ (ω) in dimensionless forms according to the suggested scalings in
(3.3) and (3.4) are shown in figure 3. A strong similarity in shape as predicted by the
random-sweeping hypothesis is clearly evident.

The form of Eφ(k) itself in figure 3(a) deserves a few more comments. The data are
characterized by a narrow scaling range (where the compensated spectrum is nearly
flat) developing at around kη ≈ 0.03, as well as a spectral ‘bump’ for Sc = 1.0 with
its peak at kη ≈ 0.2. In DNS Eφ(k) is computed as a three-dimensional spectral
density, where k is the radius of a spherical shell in Fourier space, whereas in
experiments usually a one-dimensional spectrum is measured. Relations between one-
and three-dimensional spectra of scalar fields (Monin & Yaglom 1975) imply that
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the Obukhov–Corrsin scaling constant in the three-dimensional spectrum should be
equal to 5/3 of that in the one-dimensional case. Accordingly, a dashed line at level
(0.4)(5/3) = 0.67 corresponding to the data surveyed by Sreenivasan (1996) is drawn
for comparison. The agreement observed is quite satisfactory, especially if allowance
is made for the fact that (e.g. Yeung & Zhou 1997) isotropy relations are not perfectly
satisfied at the relatively low wavenumbers where the present scaling range occurs.

The spectral bump seen in figure 3 has a physical origin similar to that caused
by viscous effects in the velocity field (Falkovich 1994), but apparently occurs at a
higher normalized wavenumber than in grid turbulence experiments (Mydlarski &
Warhaft 1998). However, additional checks in DNS show that the bump inherently
occurs at higher wavenumbers in the three-dimensional spectrum compared to its
one-dimensional counterpart. A similar shift occurs with increasing Schmidt number,
which at 1.0 in figure 3 is higher than that for temperature fluctuations with Prandtl
number 0.7 in wind-tunnel experiments. Consequently, given the Reynolds number
limitations in DNS, our results on the scalar spectrum can be said to be in broad
agreement with experiment.

A rough assessment of the ratio u∗/u′ appearing in (3.4) can be made by comparing
the different scaling levels seen in the two parts of figure 3. The observed scaling level
for EE

φ (ω) is approximately half of that seen in Eφ(k), which can be interpreted as

suggesting u∗/u′ ≈ (0.5)3/2 = 0.35. This is in contrast with an advective speed of 3.1u′
in a theoretical model for turbulence which is periodic in both space and time (L’vov,
Pomyalov & Procaccia 1999). However, it is worth noting that the advective speed
for velocity fluctuations inferred from DNS results for the Eulerian energy frequency
spectrum (which is omitted here for lack of space) is also less than the r.m.s. velocity
and of the same order as given here for scalar fluctuations.

The advection hypothesis of Tennekes (1975) implies that the highest Eulerian

frequency for the velocity fluctuations is of the order u′/η ∼ R
1/2
λ /τη , compared to

1/τη for the Lagrangian frequency. For the scalars the highest Eulerian frequency can

be replaced by u′/ηOC ∼ Sc3/4R
1/2
λ /τη . As a result, and also according to the time-scale

ratio estimate in (2.16), the Eulerian frequency spectrum is expected to have more
high-frequency content than the corresponding Lagrangian spectrum, especially for
scalars of higher Schmidt number. In figure 4 we compare these spectra, both for
passive scalars (EE

φ (ω) and EL
φ (ω), panel a) and the velocity (EE(ω) and EL(ω), panel

b). At high frequencies the Lagrangian spectra are subject to some numerical noise,
which may be a result of interpolation errors involved in obtaining Lagrangian values
in numerical simulations of finite resolution. Nevertheless, it is clear that whereas
Eulerian and Lagrangian spectra are comparable in magnitude at low frequencies,
the fall-off at high frequencies is substantially slower in the Eulerian spectrum. The
contrast is stronger for the scalars than for the velocity: e.g. for Sc = 1 at ωτη/π = 1,
EE
φ (ω) is about 2.5 orders of magnitude higher than EL

φ (ω), compared to a factor

of less than 20 between EE(ω) and EL(ω). Also, as we argued above, the Eulerian
spectrum for Sc = 1 extends to even higher frequencies than for Sc = 1/8. The
comparison here thus demonstrates a characteristic spectral broadening in Eulerian
frequency spectra due to advective effects.

The scaling behaviour of the Lagrangian frequency spectrum of the scalar is, on
the other hand, less well understood. Arguments based on dimensional analysis in the
classical inertial range suggest EL

φ (ω) ∼ 〈χ〉ω−2. However, the available data (Yeung
2001) have been inconclusive, with no clear evidence of an asymptotic scaling range.
Similar uncertainties, although to a lesser degree, are also encountered in results on
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Figure 4. Comparisons, in unnormalized form, of Lagrangian (open symbols) and Eulerian (closed
symbols) frequency spectra of (a) passive scalars and (b) the velocity, at Rλ 140: 4, Sc = 1/8; e,
Sc = 1; �, for the velocity.

the Lagrangian frequency spectrum of the velocity. These difficulties are a reflection
of the fact that the range of time scales in turbulence increases more slowly with the
Reynolds number than the range of length scales, which has as a general consequence
that (see e.g. Yeung 2002) inertial scaling in Lagrangian statistics generally requires
higher Reynolds numbers than for Eulerian quantities.

4. Conclusions
Our main theme in this paper is to examine the applicability and implications of

random-sweeping concepts based on the advection hypothesis of Tennekes (1975)
when extended to the transport of passive scalars in turbulent flow. Data from direct
numerical simulations have indicated strong mutual cancellation between local and
advective derivatives consistent with the scenario of small scales being passively swept
along by the large-scale motions. Theoretical estimates are developed (equations (2.6),
(2.15) and (2.16)) and are compared with DNS data on the time scales for Eulerian
and Lagrangian rates of change (Yeung 2001) including their Reynolds and Schmidt
number dependence. Correct trends are verified using DNS data at various Reynolds
and Schmidt numbers with a uniform mean scalar gradient. Better agreement is
consistently observed at higher Reynolds number, where all of the assumptions made,
including de-coupling of the scalar field microstructure from the large-scale velocity,
local isotropy at the second-moment level, and the scaling of molecular diffusion, are
expected to be more accurate.

In this paper we have investigated the consequences of the random sweeping
hypothesis on the relationships among three different versions of the scalar spectrum,
namely the Eulerian wavenumber spectrum [Eφ(k)], the Eulerian frequency spectrum
[EE

φ (ω)], and the Lagrangian frequency spectrum [EL
φ (ω)]. We find that, in accordance

with expectations based on the hypothesis, the Eulerian frequency spectrum of passive
scalars is (figure 3) very similar in form to the Eulerian wavenumber spectrum. On
the other hand, the Eulerian frequency spectrum differs substantially (figure 4) from
the Lagrangian frequency spectrum, especially in a spectral broadening towards
higher frequencies for scalars of higher Schmidt number. However, the scaling of the
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Lagrangian spectrum is not yet understood, and will require data at higher Reynolds
numbers than currently available.

Overall, our theoretical and numerical results confirm that the random-sweeping
hypothesis is valid for passive scalars, perhaps even more so than for the velocity
field. We emphasize that the validity of the hypothesis lends support to the use of
Lagrangian approaches to describe turbulent transport processes.
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